MySql分表、分库、分片和分区知识深入详解
一、前言
数据库的数据量达到一定程度之后,为避免带来系统性能上的瓶颈。需要进行数据的处理,采用的手段是分区、分片、分库、分表。
二、分片(类似分库)
分片是把数据库横向扩展(Scale Out)到多个物理节点上的一种有效的方式,其主要目的是为突破单节点数据库服务器的 I/O 能力限制,解决数据库扩展性问题。Shard这个词的意思是“碎片”。如果将一个数据库当作一块大玻璃,将这块玻璃打碎,那么每一小块都称为数据库的碎片(DatabaseShard)。将整个数据库打碎的过程就叫做分片,可以翻译为分片。
形式上,分片可以简单定义为将大数据库分布到多个物理节点上的一个分区方案。每一个分区包含数据库的某一部分,称为一个片,分区方式可以是任意的,并不局限于传统的水平分区和垂直分区。一个分片可以包含多个表的内容甚至可以包含多个数据库实例中的内容。每个分片被放置在一个数据库服务器上。一个数据库服务器可以处理一个或多个分片的数据。系统中需要有服务器进行查询路由转发,负责将查询转发到包含该查询所访问数据的分片或分片集合节点上去执行。
三、Scale Out/Scale Up 和 垂直切分/水平拆分
Mysql的扩展方案包括Scale Out和Scale Up两种。
Scale Out(横向扩展)是指Application可以在水平方向上扩展。一般对数据中心的应用而言,Scale out指的是当添加更多的机器时,应用仍然可以很好的利用这些机器的资源来提升自己的效率从而达到很好的扩展性。
Scale Up(纵向扩展)是指Application可以在垂直方向上扩展。一般对单台机器而言,Scale Up值得是当某个计算节点(机器)添加更多的CPU Cores,存储设备,使用更大的内存时,应用可以很充分的利用这些资源来提升自己的效率从而达到很好的扩展性。
MySql的Sharding策略包括垂直切分和水平切分两种。
垂直(纵向)拆分:是指按功能模块拆分,以解决表与表之间的io竞争。比如分为订单库、商品库、用户库...这种方式多个数据库之间的表结构不同。
水平(横向)拆分:将同一个表的数据进行分块保存到不同的数据库中,来解决单表中数据量增长出现的压力。这些数据库中的表结构完全相同。
表结构设计垂直切分。常见的一些场景包括
a).大字段的垂直切分。单独将大字段建在另外的表中,提高基础表的访问性能,原则上在性能关键的应用中应当避免数据库的大字段
b). 按照使用用途垂直切分。例如企业物料属性,可以按照基本属性、销售属性、采购属性、生产制造属性、财务会计属性等用途垂直切分
c). 按照访问频率垂直切分。例如电子商务、Web 2.0系统中,如果用户属性设置非常多,可以将基本、使用频繁的属性和不常用的属性垂直切分开
表结构设计水平切分。常见的一些场景包括
a). 比如在线电子商务网站,订单表数据量过大,按照年度、月度水平切分
b). Web 2.0网站注册用户、在线活跃用户过多,按照用户ID范围等方式,将相关用户以及该用户紧密关联的表做水平切分
c). 例如论坛的置顶帖子,因为涉及到分页问题,每页都需要显示置顶贴,这种情况可以把置顶贴水平切分开来,避免取置顶帖子时从所有帖子的表中读取
四、分表和分区
分表从表面意思说就是把一张表分成多个小表,分区则是把一张表的数据分成N多个区块,这些区块可以在同一个磁盘上,也可以在不同的磁盘上。
分表和分区的区别
1,实现方式上
mysql的分表是真正的分表,一张表分成很多表后,每一个小表都是完正的一张表,都对应三个文件(MyISAM引擎:一个.MYD数据文件,.MYI索引文件,.frm表结构文件)。
2,数据处理上
分表后数据都是存放在分表里,总表只是一个外壳,存取数据发生在一个一个的分表里面。分区则不存在分表的概念,分区只不过把存放数据的文件分成了许多小块,分区后的表还是一张表,数据处理还是由自己来完成。
3,提高性能上
分表后,单表的并发能力提高了,磁盘I/O性能也提高了。分区突破了磁盘I/O瓶颈,想提高磁盘的读写能力,来增加mysql性能。
在这一点上,分区和分表的测重点不同,分表重点是存取数据时,如何提高mysql并发能力上;而分区呢,如何突破磁盘的读写能力,从而达到提高mysql性能的目的。
4,实现的难易度上
分表的方法有很多,用merge来分表,是最简单的一种方式。这种方式和分区难易度差不多,并且对程序代码来说可以做到透明的。如果是用其他分表方式就比分区麻烦了。分区实现是比较简单的,建立分区表,跟建平常的表没什么区别,并且对代码端来说是透明的。
分区的适用场景
1. 一张表的查询速度已经慢到影响使用的时候。
2.表中的数据是分段的
3.对数据的操作往往只涉及一部分数据,而不是所有的数据
CREATE TABLE sales ( id INT AUTO_INCREMENT, amount DOUBLE NOT NULL, order_day DATETIME NOT NULL, PRIMARY KEY(id, order_day) ) ENGINE=Innodb PARTITION BY RANGE(YEAR(order_day)) ( PARTITION p_2010 VALUES LESS THAN (2010), PARTITION p_2011 VALUES LESS THAN (2011), PARTITION p_2012 VALUES LESS THAN (2012), PARTITION p_catchall VALUES LESS THAN MAXVALUE);
栏 目:MySQL
本文地址:https://idc91.com/shujuku/3826.html
您可能感兴趣的文章
- 05-31MySQL中的 inner join 和 left join的区别解析(小结果集驱动大结果集)
- 05-31MySQL索引失效十种场景与优化方案
- 05-31MYSQL 高级文本查询之regexp_like和REGEXP详解
- 05-31MySQL获取binlog的开始时间和结束时间(最新方法)
- 05-31MySQL索引查询的具体使用
- 05-31基于MySQL和Redis扣减库存的实践
- 05-31关于MySQL的存储过程与存储函数
- 05-31MySQL实战文章(非常全的基础入门类教程)
- 05-31MySQL Flink Watermark实现事件时间处理的关键技术
- 05-31MySQL Flink实时流处理的核心技术之窗口机制
阅读排行
推荐教程
- 05-30Navicat for MySQL 11注册码激活码汇总
- 05-27Mysql误删数据快速恢复
- 05-31VS2022连接数据库MySQL并进行基本的表的操作指南
- 05-30解决seata不能使用mysql8版本的问题方法
- 05-30MYSQL字符集设置的方法详解(终端的字符集)
- 05-30解决MySQL启动报错:ERROR 2003 (HY000): Can't con
- 05-30关于Mysql-connector-java驱动版本问题总结
- 11-22mac下安装mysql忘记密码的修改方法
- 05-30MySQL中的隐藏列的具体查看
- 11-22mysql exists与not exists实例详解