MySQL查询优化必备知识点总结
前言
查询优化本就不是一蹴而就的,需要学会使用对应的工具、借鉴别人的经验来对SQL进行优化,并且提升自己。
先来巩固一下索引的优点,检索数据快、查询稳定、存储具有顺序性避免服务器建立临时表、将随机的I/O变为有序的I/O。
但索引一旦创建的不规范就会造成以下问题,占用额外空间,浪费内存,降低数据的增、删、改性能。
所以只有在理解索引数据结构的基础上才能创建出高效的索引。
**本文所有操作均在MySQL8.0.12**
一、创建索引规范
在学习索引优化之前,需要对创建索引的规范有一定的了解,此规范来自于阿里巴巴开发手册。
主键索引:pk_column_column
唯一索引:uk_column_column
普通索引:idx_column_column
二、索引失效原因
创建索引需知道在什么情况下索引会失效,只有了解索引失效的原因,在创建索引时才不会出现一些已知错误。
1.带头大哥不能死
这局经典的语句就是涵盖创建索引时一定要符合最左侧原则。
例如表结构为 u_id,u_name,u_age,u_sex,u_phone,u_time
创建索引为 idx_user_name_age_sex
。
查询条件必须带上u_name这一列。
2.不在索引列上做任何操作
不在索引列上做任何计算、函数、自动或者手动的类型转换,否则会进行全表扫描。简而言之不要在索引列上做任何操作。
3.俩边类型不等
例如建立了索引idx_user_name,name字段类型为varchar
在查询时使用where name = kaka
,这样的查询方式会直接造成索引失效。
正确的用法为where name = "kaka"
。
4.不适当的like查询会导致索引失效
创建索引为idx_user_name
执行语句为select * from user where name like "kaka%";
可以命中索引。
执行语句为select name from user where name like "%kaka";
可以使用到索引(仅在8.0以上版本)。
执行语句为select * from user where name like ''%kaka";
会直接导致索引失效
5.范围条件之后的索引会失效
创建索引为idx_user_name_age_sex
执行语句select * from user where name = 'kaka' and age > 11 and sex = 1;
上面这条sql语句只会命中name和age索引,sex索引会失效。
复合索引失效需要查看key_len的长度即可。
总结:%在后边会命令索引,当使用了覆盖索引时任何查询方式都可命中索引。
以上就是咔咔关于索引失效会出现的原因总结,在很多文章中没有标注MySQL版本,所以你有可能会看到is null 、or索引会失效的结论。
三、SQL优化杀手锏之 Explain
在写完SQL语句之后必须要做的一件事情就是使用Explain进行SQL语句检测,看是否命中索引。
下图就是使用explain输出格式,接下来将会对输出格式进行简单的解释。
1.id 这列就是查询的编号,如果查询语句中没有子查询或者联合查询这个标识就一直是1。
如存在子查询或者联合查询这个编号会自增。
2.select_type
最常见的类型就是SIMPLE和PRIMARY,此列知道就行了。
3.table
理解为表名即可
4. **type
此列是在优化SQL语句时最需要关注的列之一,此列显示了查询使用了何种类型。
以下排序从最优到最差。
- system:表内只有一行数据
- const:最多只会有一条记录匹配,常用于主键或者唯一索引为条件查询
- eq_ref:当连接使用的索引为主键和唯一时会出现
- ref:使用普通索引=或<=> 运算符进行比较将会出现
- fulltext:使用全文索引
- ref_or_null:跟ref类型类似,只是增加了null值的判断,实际用的不多。语句为
where name = 'kaka' and name is null,name
为普通索引。 - index_merge:查询语句使用了俩个以上的索引,常见在使用and、or会出现,官方文档将此类型放在ref_or_null之后,但是在很多的情况下由于读取索引过多性能有可能还不如range
- unique_subquery:用于where中的in查询,完全替换子查询,效率更高。语句为value IN (SELECT primary_key FROM single_table WHERE some_expr)
- index_subquery:子查询中的返回结果字段组合是一个索引(或索引组合),但不是一个主键或唯一索引
- range:索引范围查询,常见于使用 =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN()或者like等运算符的查询中。
- index:索引全表扫描,把索引从头到尾扫一遍
- all:全表扫描,性能最差。
5.possible_keys
此列显示的可能会使用到的索引
6. **key
优化器从possible_keys中命中的索引
7.key_len
查询用到的索引长度(字节数),key_len只计算where条件用到的索引长度,而排序和分组就算用到了索引,也不会计算到key_len中。
8.ref
如果是使用的常数等值查询,这里会显示const。
如果是连接查询,被驱动表的执行计划这里会显示驱动表的关联字段。
如果是条件使用了表达式或者函数,或者条件列发生了内部隐式转换,这里可能显示为func。
9. **rows
这是mysql估算的需要扫描的行数(不是精确值)。
这个值非常直观显示 SQL 的效率好坏, 原则上 rows 越少越好。
10.filtered
此列表示存储引擎返回的数据在server层过滤后,剩下多少满足查询的记录数量的比例,注意是百分比,不是具体记录数
11. **extra
在大多数情况下会出现以下几种情况。
- Using index:使用了覆盖索引,查询列都为索引字段
- Using where:使用了where语句
- Using temporary :查询结果进行排序的时候使用了一张临时表
- Using filesort :对数据使用一个外部的索引排序
- Using index condition:使用了索引下推,关于索引下推可以查看咔咔之前文章MySQL索引一文
12.总结
以上就是关于Explain所有列的说明,在平时开发的过程中,一般只会关注type、key、rows、extra这四列。
- type优化目标至少达到range级别,要求是ref级别,如果可以consts最好。
- key是查询使用到的索引,如果此列为空,要么未建立索引,要么索引失效。
- rows是这条SQL语句扫描的行数,越少越好。
- extra:此列为扩展列,如果出现临时表、文件排序则需要优化。
四、SQL优化杀手锏之 慢查询
上文说到了可以直接使用explain来分析自己的SQL语句是否合理,接下来再聊一个点那就是慢查询。
查看慢查询是否打开
查看是否记录没有使用索引的SQL语句
开启慢查询、开启记录没有使用到索引的SQL语句
set global log_queries_not_using_idnexes='on'; set global log_queries_not_using_indexes='on';
您可能感兴趣的文章
- 05-31MySQL中的 inner join 和 left join的区别解析(小结果集驱动大结果集)
- 05-31MySQL索引失效十种场景与优化方案
- 05-31MYSQL 高级文本查询之regexp_like和REGEXP详解
- 05-31MySQL获取binlog的开始时间和结束时间(最新方法)
- 05-31MySQL索引查询的具体使用
- 05-31基于MySQL和Redis扣减库存的实践
- 05-31关于MySQL的存储过程与存储函数
- 05-31MySQL实战文章(非常全的基础入门类教程)
- 05-31MySQL Flink Watermark实现事件时间处理的关键技术
- 05-31MySQL Flink实时流处理的核心技术之窗口机制
阅读排行
推荐教程
- 05-30Navicat for MySQL 11注册码激活码汇总
- 05-27Mysql误删数据快速恢复
- 05-31VS2022连接数据库MySQL并进行基本的表的操作指南
- 05-30解决seata不能使用mysql8版本的问题方法
- 05-30MYSQL字符集设置的方法详解(终端的字符集)
- 05-30解决MySQL启动报错:ERROR 2003 (HY000): Can't con
- 05-30关于Mysql-connector-java驱动版本问题总结
- 11-22mac下安装mysql忘记密码的修改方法
- 05-30MySQL中的隐藏列的具体查看
- 11-22mysql exists与not exists实例详解